Minimum error bounds for multidimensional spline approximation
نویسندگان
چکیده
منابع مشابه
Pointwise error bounds for orthogonal cardinal spline approximation
For orthogonal cardinal spline approximation, closed form expressions of the reproducing kernel and the Peano kernels in terms of exponential splines are proved. Concrete and sharp pointwise error bounds are deduced for low degree splines.
متن کاملError Bounds for Polynomial Spline Interpolation
New upper and lower bounds for the L2 and Vo norms of derivatives of the error in polynomial spline interpolation are derived. These results improve corresponding results of Ahlberg, Nilson, and Walsh, cf. [1], and Schultz and Varga, cf. [5].
متن کاملApproximation Bounds For Minimum Degree Matching
We consider the MinGreedy strategy for Maximum Cardinality Matching. MinGreedy repeatedly selects an edge incident with a node of minimum degree. For graphs of degree at most ∆ we show that MinGreedy achieves approximation ratio at least ∆−1 2∆−3 in the worst case and that this performance is optimal among adaptive priority algorithms in the vertex model, which include many prominent greedy mat...
متن کاملBest Error Bounds of Quartic Spline Interpolation
In this paper, we have obtained existence, uniqueness, best error bound and convergence properties of C Deficient Quartic Spline Interpolation. Classification Code Ø 41A05, 65D07.
متن کاملTotal variation error bounds for geometric approximation
We develop a new formulation of Stein’s method to obtain computable upper bounds on the total variation distance between the geometric distribution and a distribution of interest. Our framework reduces the problem to the construction of a coupling between the original distribution and the “discrete equilibrium” distribution from renewal theory. We illustrate the approach in four nontrivial exam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1971
ISSN: 0022-0000
DOI: 10.1016/s0022-0000(71)80026-0